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The stability of a layer of binary 
gas mixture heated below 
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This paper investigates the BBnard problem in a binary mixture of dilute gases 
in which an imposed vertical temperature gradient induces a concentration 
gradient owing to the thermal diffusion effect. The transfer equations are 
derived by first-order perturbation theory which leads to instability criteria. 
Numerical results indicate that instability will set in only as stationary convec- 
tion. This is distinctly different from the cases of liquids and concentrated gases, 
in which the thermal diffusion (or Soret) effect gives rise to oscillato1y instability. 
It is disclosed in the study that the destabilization of the dilute gas-mixture 
layer is enhanced by an increase in the thermal diffusion ratio and/or the molecular 
weight ratio of the species. 

1. Introduction 
In  a multi-component system the momentum flux depends only upon the 

velocity gradients, while the heat and mass fluxes depend both on the temperature 
gradient and on the mechanical driving forces (Bird, Stewart & Lightfoot 1960, 
0 18.4). The diffusion of matter induced by an applied temperature gradient is 
called the Soret effect in liquid mixtures or the thermal diffusion effect in gaseous 
mixtures. Coupled with this effect is a mechanical driving force, called the Dufour 
effect or diffusion-thermo effect, which tends to produce the diffusion of energy 
resulting from a concentration gradient. 

The BBnard problem dealing with the onset of convective instability in a liquid 
mixture on which both temperature and concentration gradients are imposed 
has recently beeninvestigated theoretically (Veronis 1965; Sani 1965; Nield 1967) 
and experimentally (Shirtcliffe 1967). Hurle & Jakeman (1969) predicted and 
later ( 197 1) demonstrated that oscillatory instability may be induced in the 
thermosolutal liquid owing to the action of the Soret effect. In  the case of gases, 
however, overstable oscillations were predicted onIy in concentrated mixtures. 
Their analysis is valid for the mixtures of liquids and dense gases but is not 
justified for the mixtures of dilute gases. I n  the case of dilute gases, the transport 
equations and coefficients are developed on the basis of kinetic theory. While 
the Dufour effect is still negligible, the thermal diffusion effect on mass transfer 
and the heat flux due to interdiffusion together with the ordinary thermal and 
mass diffusion mechanisms play important roles in the transport phenomena. 

t Present address : Cummin Engine Company, Columbus, Indiana. 
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This paper investigates the BBnard problem in a binary mixture of dilute 
gases in which an imposed vertical temperature gradient induoes a concentration 
gradient owing to thermal diffusion. The transport equations are derived by 
fist-order perturbation theory, which leads to instability criteria. The numerical 
results reveal that instability will set in only as stationary convection. This is in 
sharp contrast to the finding of Hurle & Jakeman (197 1) that the Soret effect 
can give rise to oscillatory instability in liquids and concentrated gases. The 
effect of thermal diffusion on the stability criteria is examined. 

2. Formulation of the problem 
The system to be studied consists of a binaiy ga.s mixture confined between 

two infinite horizontal plates, the lower one being at  a higher temperature T, and 
the upper one at  lower temperature Th. The distance between the plates is h. 
Cartesian co-ordinates (x, y, z )  are employed with the origin fixed at  the midplane 
between the plates and z measuring the distance normal to the plates. 

The temperature gradient in a binary fluid mixture induces a redistribution 
of concentration. According to Bird, Curtiss & Hirschfelder (1955)) one can write 
the mass flux J, as the sum of terms describing ordinary diffusion and thermal 
diffusion as 

where n = n, + n2. The subscripts 1 and 2 denote the heavier and lighter species, 
respectively, p the mixture density, n the number density (number of molecules 
per unit volume), m, and m2 the mass of a molecule of each species, C the molecular 
concentration fraction of the heavier species ( = n,/n), D, the diffusion coefficient, 
k, the thermal diffusion ratio and T the temperature. 

The heat flux q in the mixture consists of three contributions associated with 
the molecular diffusion, interdiffusion and the Dufour or diffusion-thermo effect. 
The Dufour heat flux is usidly of minor importance. One can write the total 
heat flux relative to the mass-average velocity as 

q = - KVT -t C, T(m,  -mz) nD,[VC + k,V(ln T ) ] ,  ( 2 )  
in whioh K and C, are the thermal conductivity and specific heat under constant 
pressure of the mixture, respectively. 

If the confining plates are impermeable, so that J, vanishes, then ( I )  yields 

ac k , a ~  _ -  _ _ - -  
ax T a x .  (3) 

A concentration gradient is therefore established at the plates and will extend 
into the entire mixture. In  other words, an applied temperature gradient can 
establish a concentration gradient owing to the thermal diffusion effect, If 
a uniform vertical temperature gradient a is imposed on the mixture, i.e. 

T = T, - UZ, (4) 

where Tm = i(Ta + Th) and a = (Tb - T,)/h, the integration of (3) yields the induced 

1 a concentration its 
0 = c m + L  x + - z 2 +  ... 

Tm "[ 2Tm ( 5 )  
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for ( ~ Z / T , ) ~  < 1, in which Cm is the value of C at z = 0. For a thin layer only the 
first term in square brackets in (5 )  is retained. 

The density of the mixture p can be expiessed as the sum of the partial 
densities as 

(6) 

The equation of state for an ideal gas reads 

p = nlml + n2m2. 

P = nvT, ( 7 )  

in which Y is the Boltzmann constant. The combination of (6) and (7) together 
with the definition n = n, + n2 yields 

P P 
P = [m2 + (m, - m2) CI = -=- [M, + ( N I ,  - N I , )  (71, (8) RT 

where R is the universal gas constant and MI and M, are the molecular weights 
of the two species. 

Since the mixture density is a function of both temperature and concentration, 
one can write a first-order Taylor-series expansion for p with respect to its mean 
value pm(Tm, C,) in the form 

P = Pm + (aP/aT)m ( T -  Tm) + (ap/ac)m (C-cm) ,  

where the subscript m refers to the base state (T,, Cm). With the aid of ( 7 )  and (S), 
this equation can be rewritten as 

P = Pm[l-P,(T-Tm) +Pc(C-cm)l, (9) 

in which PI. denotes the thermal cubical expansion coeficient and p, relates 
density increases to increases in solute concentration : 

PT=-l/Tm, P c - - (m24p) ( W M z -  1). (10) 

Let w', C' and T' be the x velocity Component, the concentration and temper- 
ature of the perturbation, respectively. I f  (9) and the continuity equation are 
used to eliminate the pressure terms in the momentum equations, the Boussinesq 
approximation for a quasi-incompressiblme fluid gives the z component of the 
momentum, energy and mass-transfer equations as 

and 

respectively. Here, t is the time, k the thermal diffusivity and g the acceleration 
due to gravity. 

For convenience in the analysis, a new variable defined by 

H' = C' + kTT'/T,, (14) 
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is introduced. The appropriate boundary conditions at z = k +h can be ex- 
pressed as 

which describe the situation at  the two rigid boundaries, namely no flow, 
specified surface temperature, and zero mass flux. 

wf = aw'/az = 0, TI = 0, a w l a x  = 0, (15) 

With the introduction of the non-dimensional variables 

7 = x /h ,  5 = y/h, 6 = z/h,  7 = kt/hz 

together with the non-dimensional quantities 

w' = (kTm/h24 W(7,5) f ( r ,  a, 
T' = T,A(7, 6)f(r, , 5 1 9  

(1 1) becomes 

1 -(D2-b2)- a = - h  2RaA( 1 + $Le/S) + (D2 - b2)2 W + Ra$HLeb2 (16) Pr a7 

while (12) and (1  3) are reduced to 

aA/a7--. w = ( ~ 2 - b 2 ) ~ - + ( ~ 2 - b 2 )  H ,  (17) 

respectively. Here, D is the differential operator 8/86 and the function f(r,c) 
satisfies 

in which b is the horizontal wavenumber. Pr is the Prandtl number k/v, Ra is 
the Rayleigh number, defined as 

Ra = olPTgh4/(kv), 

S is a dimensionless parameter defined by 

f l  = Pmk/(nmzD,) 

and Le is k/D,, the Lewis number. The parameter S is equivalent to the ratio of 
the Schmidt number to the Prandtl number, or the Lewis number. The thermal 
diffusion parameter g5 is defined by 

9 = k*UK1/M2- 1 1 9  

where iKl and M, are the molecular weights of the heavier and lighter species, 
respectively. The boundary conditions ( 15) become 

H = D W = O ,  A = D H = O  
ate= +a.  
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3. Solution 
An examination reveals that it is a difficult task to solve (16)-(18) subject to 

the boundary conditions (20) for an expression which predicts the criteria for 
the onset of stationary or oscillatory convection. Consequently, solutions will 
be obtained separately for the neutral stability and overstability. The type of 
convection which would eventually occur in the system can be determined from 
the criterion that gives the lower critical Rayleigh number. The criteria for the 
onset of stationary or oscillatory convection can be obtained by solving (16)-( 18) 
by means of the Finlayson's approximate method (Finlayson 1968). 

As the first approximation it is postulated that 

A = 2J B(7) cos ( ~ 5 ) ~  
H = 24 E(7)  cos (Znc), 

which satisfy the boundary conditions (20). Here, the eigenvalue is the first 
root of the transcendental equation 

tanh ( i p )  +tan (&) = 0. 

After substitution of (21), equations (16)-(18) are reduced to  the first-order 
ordinary differential equations 

(22) 

(23) 

dA - = e,A-e2B-e3E, 
dT 

4 dB _ -  - 0 9 8 6 A - ( ~ 2 + b 2 ) B + g $ ( 4 7 i L + b 2 ) E ,  
a7 

- ' (an2 + b2) E,  
4 

(n2+ b2)  B - - dE 
d7 3nS S 
- =-- 

(500.564 + 24-652b2 + b4) Pr 
12.326 + b2 in which el = - Y 

0986b2Ra( 1 + $So/S) Pr 
12.326 + b2 

0.5495b2So$Ra 
12*326+b2 , e3 = e2 = - 

The characteristic equation of (22)-( 24) is 

c~~+a,a2+a,c~+a,  = 0, 

where is the eigenvalue and 

a, = (n2 + b2) + (&/So - $) (4n2 + b2)/X - e l ,  

a2 = (n2 + b2) [(4n2 + b2) (S/So - 4 + 16$/9r2)/S- ell - el(S/go - 4 )  

a3 = (4n2 + b2) [0986(S/S0- 4) e2 - (n2 + b2) (#/So - $/9n2) ell 8 

x ( 4n2 + b2)/S + 0.986e2, 

- 1.315 (n2 + b2) e3/S. 



108 

5.0 

4.0 
in 

2 
X 

3.0 

2.0 

M .  L. Lawson and W.-J. Yang 

- 

- 

- 

- 

1.0 I I I I I 
0 2 4 6 8 

Wavenumber, b 

FIGURE 1. Rayleigh nurnber versus wavenumber for S = 2.5 and q5 = 0.2. 

It can be shown that the condition for overstability is 

alas-a3 = 0, (25) 

which yields a relationship between the overstability Rayleigh number and the 
wavenumber b. The corresponding frequency is 

sz = at .  (26) 

The criterion for stationary convection is 

a3 = 0. 

4. Results and discussion 
The values of the Prandtl and Lewis numbers are taken to be 0.7 and 1, 

respectively, which are typical of most gases. It is known (Grew & Ibbs 1952, 
$2.6) that the value of # depends upon the ratio of the molecular weights, the 
molecular diameters and the nature of intermolecular forces. At  STP the 
values of # are 0.6, 0.441, 0-049, 0-0007 and -0.00093 for N2-He, Ne-Xe, 
Ne-A, N2-0, and Ne-NH, mixtures, respectively. The values of AS are 6.0, 1-09 
and 1.04 for N2-He, Ne-NH, and N,-0, mixtures, respectively. 

Equation (27) is depicted graphically in figures 1 and 2 .  Figure 1 illustrates 
the relationship between the Rayleigh number and wavenumber for a gas mixture 
having X = 2.5 and q5 = 0.2. The minimum Rayleigh number is where instability 
sets in as stationary convection. The critical Rayleigh number is lower than 1717, 
the value for a pure-gas layer, which corresponds to q5 = 0. However, the wave- 
number corresponding to the critical Rayleigh number is 3.17. Since this wave- 
number is approximately equal to n, the wavelength in a two-dimensional 
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FIGURE 2. Critical Rayleigh number versus 4. 

disturbance is nearly twice the depth of the gas-mixture layer. Therefore in 
analogy with the case of a pure-gas layer in the presence of a temperature gradient, 
the cells generated in a vertical plane bounded by the solid surfaces and by 
neighbouring upward and downward currents would be nearly square. Equa- 
tion (25) has also been examined numerically for overstability. The Ra vs. b curve 
for overstability, if plotted in figure 1, would lie above the existing curve for 
neutral stability. This indicates that instability will set in only as stationary 
convection. No overstability is found to occur within the ranges of values of the 
parameters being studied: S < 50 and - 0.001 < # < 1-0. 

In  figure 2 the critical Rayleigh number is plotted against q5 with S as a 
parameter. It is seen in the figure that, for a given value of AY, the critical Rayleigh 
number decreases with an increase in 4, indicating destabilization of the layer 
owing to the thermal diffusion effect, which is enhanced as the thermal diffusion 
ratio lcT and/or the molecular weight ratio MJM, increase. 

5.  Conclusions 
A necessary condition for linear-theory overstability is the existence of two 

opposing forces: a destabilizing temperature gradient in conjunction with rota- 
tion, surface tension or a stabilizing solutal gradient. While the Soret effect gives 
rise to overstable solutions of the thermosolutal BBnard problem, instability 
can set in only as stationary convection in a layer of binary gas mixture owing to 
the action of thermal diffusion effect. Thermal diffusion is a destabilizing force 
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which aids the temperature gradient to promote the occurrence of stationary 
stability in the gas mixtures at  a lower critical Rayleigh number than in a single- 
component gas layer. The destabilization of the layer due to the thermal diffusion 
effect is enhanced as the thermal diffusion ratio and/or the molecular weight 
ratio increase. 
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